Estimation in Partially Linear Single-Index Panel Data Models with Fixed Effects

نویسندگان

  • Jia Chen
  • Jiti Gao
  • Degui Li
چکیده

In this paper, we consider semiparametric estimation in a partially linear single– index panel data model with fixed effects. Without taking the difference explicitly, we propose using a semiparametric minimum average variance estimation (SMAVE) based on a dummy–variable method to remove the fixed effects and obtain consistent estimators for both the parameters and the unknown link function. As both the cross section size and the time series length tend to infinity, we not only establish an asymptotically normal distribution for the estimators of the parameters in the single index and the linear component of the model, but also obtain an asymptotically normal distribution for the nonparametric local linear estimator of the unknown link function. The asymptotically normal distributions of the proposed estimators are similar to those obtained in the random effects case. In addition, we study several partially linear single–index dynamic panel data models. The methods and results are augmented by simulation studies and illustrated by an application to a cigarette– demand data set in the US from 1963–1992. JEL subject classifications: C13, C14, C23.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Profile Likelihood Estimation of Partially Linear Panel Data Models with Fixed Effects∗

We consider consistent estimation of partially linear panel data models with fixed effects. We propose profile-likelihood-based estimators for both the parametric and nonparametric components in the models and establish convergence rates and asymptotic normality for both estimators.

متن کامل

Estimation of Partially Linear Panel Data Models with Fixed Effects

This paper considers the problem of estimating a partially linear semipara-metric fixed effects panel data model with possible endogeneity. Using the series method, we establish the root N normality result for the estimator of the parametric component, and we show that the unknown function can be consistently estimated at the standard nonparametric rate. c 2002 Peking University Press

متن کامل

Series Estimation of Partially Linear Panel Data Models with Fixed Effects∗

This paper considers the problem of estimating a partially linear semiparametric fixed effects panel data model with possible endogeneity. Using the series method, we establish the root N normality result for the estimator of the parametric component, and we show that the unknown function can be consistently estimated at the standard nonparametric rate.

متن کامل

Nonparametric estimation and testing of fixed effects panel data models.

In this paper we consider the problem of estimating nonparametric panel data models with fixed effects. We introduce an iterative nonparametric kernel estimator. We also extend the estimation method to the case of a semiparametric partially linear fixed effects model. To determine whether a parametric, semiparametric or nonparametric model is appropriate, we propose test statistics to test betw...

متن کامل

Semiparametric Single-Index Panel Data Models With Cross-Sectional Dependence

In this paper, we consider a semiparametric single index panel data model with cross–sectional dependence, high–dimensionality and stationarity. Meanwhile, we allow fixed effects to be correlated with the regressors to capture unobservable heterogeneity. Under a general spatial error dependence structure, we then establish some consistent closed–form estimates for both the unknown parameters an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011